document.write( "Question 1137525: Determine whether the infinite geometric series converges. If it does, then find the sum\r
\n" );
document.write( "\n" );
document.write( "(5/4)+(5/16)+(5/64)+... \n" );
document.write( "
Algebra.Com's Answer #755400 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "We start with 5/4 as the first term \n" ); document.write( "To get the next term, we multiply by 1/4 \n" ); document.write( "(5/4)*(1/4) = 5/16 \n" ); document.write( "and then multiply that term by 1/4 to get the third term \n" ); document.write( "(5/16)*(1/4) = 5/64 \n" ); document.write( "and so on\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a = 5/4 is the first term \n" ); document.write( "r = 1/4 is the common ratio \n" ); document.write( "Because r = 1/4 = 0.25 is between -1 and 1, this means the infinite geometric series does converge. In other words, that r value makes -1 < r < 1 true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So we use the formula below to find the infinite sum S \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The geometric series converges to the sum of 5/3 = 1.6667 \n" ); document.write( " |