document.write( "Question 103658: Solve by completing the square. 2x^2 – 6x – 3 = 0 \n" ); document.write( "
Algebra.Com's Answer #75530 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"2x%5E2-6x-3=0\" Start with the given equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2-6x=3\" Add 3 to both sides
\n" ); document.write( "\"2%28x%5E2-3x%29=3\" Factor out the leading coefficient 2. This step is important since we want the \"x%5E2\" coefficient to be equal to 1.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Take half of the x coefficient -3 to get -1.5 (ie \"-3%2F2=-1.5\")\r
\n" ); document.write( "\n" ); document.write( "Now square -1.5 to get 2.25 (ie \"%28-1.5%29%5E2=2.25\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%28x%5E2-3x%2B2.25%29=3%2B2.25%282%29\" Add this result (2.25) to the expression \"x%5E2-3x\" inside the parenthesis. Now the expression \"x%5E2-3x%2B2.25\" is a perfect square trinomial. Now add the result (2.25)(2) (remember we factored out a 2) to the right side.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%28x-1.5%29%5E2=3%2B2.25%282%29\" Factor \"x%5E2-3x%2B2.25\" into \"%28x-1.5%29%5E2\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%28x-1.5%29%5E2=3%2B4.5\" Multiply 2.25 and 2 to get 4.5\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%28x-1.5%29%5E2=7.5\" Combine like terms on the right side\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-1.5%29%5E2=3.75\" Divide both sides by 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x-1.5=0%2B-sqrt%283.75%29\" Take the square root of both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=1.5%2B-sqrt%283.75%29\" Add 1.5 to both sides to isolate x.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the expression breaks down to\r
\n" ); document.write( "\n" ); document.write( "\"x=1.5%2Bsqrt%283.75%29\" or \"x=1.5-sqrt%283.75%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our answer is approximately\r
\n" ); document.write( "\n" ); document.write( "\"x=3.43649167310371\" or \"x=-0.436491673103709\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here is visual proof\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+500%2C+500%2C+-10%2C+10%2C+-10%2C+10%2C+2x%5E2-6x-3%29+\" graph of \"y=2x%5E2-6x-3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "When we use the root finder feature on a calculator, we would find that the x-intercepts are \"x=3.43649167310371\" and \"x=-0.436491673103709\", so this verifies our answer.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );