document.write( "Question 1137147: If ​P(B)equals 0.2​, ​P(A | ​B)equals 0.5​, ​P(Upper B prime​)equals 0.8​, and​ P(A | Upper B prime​)equals 0.7​, find​ P(B |​ A). \n" ); document.write( "
Algebra.Com's Answer #754970 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Given info:
\n" ); document.write( "P(B) = 0.2
\n" ); document.write( "P(A|B) = 0.5
\n" ); document.write( "P(B') = 0.8
\n" ); document.write( "P(A|B') = 0.7\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Through the law of total probability, we can say,
\n" ); document.write( "P(A) = P(A|B)*P(B) + P(A|B')*P(B')
\n" ); document.write( "P(A) = 0.5*0.2 + 0.7*0.8
\n" ); document.write( "P(A) = 0.66\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now use Bayes Theorem to get the conditional probability we want
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The approximate answer, accurate to four decimal places, is 0.1515
\n" ); document.write( "
\n" ); document.write( "
\n" );