document.write( "Question 103837: The sum of the digits of two- digit numbers is 10. if the digits are reversed, the new number is 54 less than the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #75487 by checkley75(3666)\"\" \"About 
You can put this solution on YOUR website!
X+Y=10 OR X=10-Y
\n" ); document.write( "10X+Y=10Y+X-54 NOW REPLACE X IN THIS EQUATION BY (10-Y)
\n" ); document.write( "10(10-Y)+Y=10Y+(10-Y)+54
\n" ); document.write( "100-10Y+Y=10Y+10-Y+54
\n" ); document.write( "100-9Y=9Y+64
\n" ); document.write( "-18Y=-36
\n" ); document.write( "Y=-36/-18
\n" ); document.write( "Y=2 ANSWER FOR THE UNITS DIGIT.
\n" ); document.write( "X=10-2
\n" ); document.write( "X=8 ANSWER FOR THE TENS DIGIT.
\n" ); document.write( "PROOF
\n" ); document.write( "82=28+54
\n" ); document.write( "82=82
\n" ); document.write( "
\n" ); document.write( "
\n" );