document.write( "Question 103792This question is from textbook Precalculus A GRAPHING APPROACH
\n" ); document.write( ": My question is if the vertex of f(x)=-x^2+bx+8 has y-coordinate 17 and is in the second quadrant, find b. \n" ); document.write( "
Algebra.Com's Answer #75446 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\"f%28x%29=-x%5E2%2Bbx%2B8\" Start with the given equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find the x-coordinate of the vertex, simply use this formula\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-b%2F%282a%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-b%2F%282%28-1%29%29\" So plug in a=-1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=b%2F2\" Simplify\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the x value of the vertex is \"x=b%2F2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now plug this value in, as well as f(x)=17, to solve for b\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"17=-%28b%2F2%29%5E2%2Bb%28b%2F2%29%2B8\" Plug in \"x=b%2F2\" and f(x)=17\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"17=-b%5E2%2F4%2Bb%28b%2F2%29%2B8\" Square \"b%2F2\" to get \"b%5E2%2F4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"17=-b%5E2%2F4%2Bb%5E2%2F2%2B8\" Multiply\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"68=-b%5E2%2B2b%5E2%2B32\" Multiply both sides by 4 to eliminate any fractions\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0=-b%5E2%2B2b%5E2%2B32-68\" Subtract 68 from both sides\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0=b%5E2-36\" Combine like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0=%28b%2B6%29%28b-6%29\" Factor the right side\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now set each factor equal to zero and solve\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"b%2B6=0\" or \"b-6=0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"b=-6\" or \"b=6\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But since the vertex is in the second quadrant, the answer is \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"b=-6\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice if we plug in b=-6 into \"f%28x%29=-x%5E2%2Bbx%2B8\", we get\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"f%28x%29=-x%5E2-6x%2B8\" and if we graph the equation we get:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+500%2C+500%2C+-6%2C+5%2C+-2%2C+20%2C+-x%5E2-6x%2B8%29+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and we can see that the vertex has a y value at y=17 and it lies in the second quadrant. So our answer is verified.
\n" ); document.write( "
\n" );