document.write( "Question 1136388: Suppose $2,900 is invested in an account at an annual interest rate of 3.5% compounded continuously. How long (to the nearest tenth of a year) will it take the investment to double in size? \n" ); document.write( "
Algebra.Com's Answer #754174 by Theo(13342)\"\" \"About 
You can put this solution on YOUR website!
the continuous compounding formula is f = p * e ^ (r * n)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "f if the future value
\n" ); document.write( "p is the present value
\n" ); document.write( "e is the scientific constant of 2.718281828.....
\n" ); document.write( "r is the rate per time period.
\n" ); document.write( "n is the number of time periods.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "in your problem:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p = 2900
\n" ); document.write( "f = 2 * 2900
\n" ); document.write( "r = 3.5% / 100 = .035 per year.
\n" ); document.write( "n = the number of years you want to find.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the formula becomes:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2 * 2900 = 2900 * e ^ (.035 * n)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "simplify this to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5800 = 2900 * e ^ (.035 * n)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "divide both sides of this equation by 2900 to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2 = e ^ (.035 * n)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "take the natural log of both sides of this equation to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) = ln(e ^ (.035 * n)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since ln(a^b) = b*ln(a), this equation becomes:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) = .035 * n * ln(e).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since ln(e) = 1, this equation becomes:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) = .035 * n\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "divide both sides of this equation by .035 to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) / .035 = n\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "solve for n to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = ln(2) / .035 = 19.80420516.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "confirm by replacing n in the original equation of 5800 = 2900 * e ^ (.035 * n) to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5800 = 2900 * e ^ (.035 * 19.80420516) which becomes:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5800 = 5800\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "this confirms the solution is correct.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the solution is that investment will double in 19.8 years rounded to the nearest tenth of a year.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );