document.write( "Question 1135915: from the point inside a square the distance to three corners are 4,5 and 6 m respectively. Find the length of the side of a square. \n" ); document.write( "
Algebra.Com's Answer #753645 by ikleyn(52802)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "Let ABCD be the square with the side of the length \"a\" in a coordinate plane,\r\n" );
document.write( "\r\n" );
document.write( "    A = (0,0),  B = (a,0),  C = (a,a)  and  D = (0,a).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Let (x,y) be the point inside the square ABCD with the distance 4 from A, 5 from D  and  6 from B.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we have these three equations (\"distances\")\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    x^2     + y^2     = 4^2,      (1)\r\n" );
document.write( "\r\n" );
document.write( "    (a-x)^2 + y^2     = 6^2,      (2)\r\n" );
document.write( "\r\n" );
document.write( "    x^2     + (y-a)^2 = 5^2.      (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Making FOIL in equations (2) and (3), I can re-write them in this form\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    x^2             + y^2 = 16,   (4)    (= same as (1) )\r\n" );
document.write( "\r\n" );
document.write( "    a^2 - 2ax + x^2 + y^2 = 36,   (5)\r\n" );
document.write( "\r\n" );
document.write( "    x^2 + y^2 - 2ay + a^2 = 25.   (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Replacing  x^2 + y^2 by 16  in equations (5) and (6), I obtain new equations instead of them\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    a^2 - 2ax = 20                (7)\r\n" );
document.write( "\r\n" );
document.write( "    a^2 - 2ay =  9                (8)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From equations (7) and (8),  x = \"%28a%5E2-20%29%2F2a\",  y = \"%28a%5E2+-+9%29%2F2a\".\r\n" );
document.write( "\r\n" );
document.write( "Substituting these expressions for x and y into equation (4), you get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"%28a-20%29%5E2\" + \"%28a%5E2+-9%29%5E2\" = \"%284a%5E2%29%2A16\",\r\n" );
document.write( "\r\n" );
document.write( "or, simplifying\r\n" );
document.write( "\r\n" );
document.write( "    \"a%5E4+-+40a%5E2+%2B+400\" + \"a%5E4+-+18a%5E2+%2B+81\" = \"64a%5E2\",\r\n" );
document.write( "\r\n" );
document.write( "    \"2a%5E4+-+122a%5E2+%2B+481\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From this bi-quadratic equation, you get for \"a%5E2\", by applying the quadratic formula\r\n" );
document.write( "\r\n" );
document.write( "    \"a%5E2\" = \"%28122+%2B-+sqrt%28122%5E2+-+4%2A2%2A481%29%29%2F%282%2A2%29\" = \"%28122+%2B-+sqrt%2811036%29%29%2F4\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The smaller value does not work for \"a\" (as it is easy to check), leaving the larger value\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"a%5E2\" = \"%28122+%2B+sqrt%2811036%29%29%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "as the only meaningful.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus  a = \"sqrt%28122+%2B+sqrt%2811036%29%29%2F2\" = 7.534 (approximately).\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );