document.write( "Question 15127: A^T denotes the transpose of a matrix A.
\n" );
document.write( "Show that = Tr(B^T,A) defines an inner product on R^(n x n)\r
\n" );
document.write( "\n" );
document.write( "Let U be the set of symmetric 2 x 2 matrices with real entries. U is subspace of R (2x2). Find an orthonormal basis of U with respect to the above inner product. \n" );
document.write( "
Algebra.Com's Answer #7533 by khwang(438)![]() ![]() ![]() You can put this solution on YOUR website! A : nxn square matrix over R. (missing) \n" ); document.write( " \n" ); document.write( "A^T denotes the transpose of a matrix A. \n" ); document.write( "Show that = Tr(B^T,A) defines an inner product on \n" ); document.write( "Let U be the set of symmetric 2 x 2 matrices with real entries. U is subspace of R (2x2). Find an orthonormal basis of U with respect to the above inner product.\r \n" ); document.write( "\n" ); document.write( " Let A = (aij), B = (bij) be nxn sq. matrices over R. ( \n" ); document.write( " Define (A,B) = \n" ); document.write( " \n" ); document.write( " You have to check the definition of inner product (as symmetric \n" ); document.write( " , linear, positive definite, all very easy) \n" ); document.write( " \n" ); document.write( " Note the dim of the vector space \n" ); document.write( " And dim U = 3 (why?) \n" ); document.write( " Let A= \n" ); document.write( " (1 0) \n" ); document.write( " (0 0) \n" ); document.write( " B= \n" ); document.write( " (0 0) \n" ); document.write( " (0 1) \n" ); document.write( " C = \n" ); document.write( " (0 \n" ); document.write( " ( \n" ); document.write( " then {A,B,C} forms an o.n. basis of U.\r \n" ); document.write( "\n" ); document.write( " You should test (A,A)=(B,B)=(C,C)= 1. \n" ); document.write( " (A,B) = (B,C) =(C,A) = 0\r \n" ); document.write( "\n" ); document.write( " Kenny \n" ); document.write( " \n" ); document.write( " |