document.write( "Question 1135550: Find b and c so that y=-15x^2+bx+c has vertex (-10,0)? \n" ); document.write( "
Algebra.Com's Answer #753183 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The given equation is in the form
\n" ); document.write( "y = ax^2 + bx + c
\n" ); document.write( "We see that only a = -15 is known while b and c are currently unknown\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Vertex = (h,k) = (-10,0)
\n" ); document.write( "h = -10 and k = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Vertex Form:
\n" ); document.write( "y = a(x-h)^2 + k
\n" ); document.write( "y = -15(x-(-10))^2 + 0 ... plug in the given values
\n" ); document.write( "y = -15(x+10)^2
\n" ); document.write( "y = -15(x+10)(x+10)
\n" ); document.write( "y = -15(x^2+10x+10x+100) ... FOIL rule
\n" ); document.write( "y = -15(x^2+20x+100)
\n" ); document.write( "y = -15(x^2)-15(20x)-15(100) ... distribute
\n" ); document.write( "y = -15x^2-300x-1500\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compare that last equation with the form y = ax^2+bx+c and we see that
\n" ); document.write( "a = -15
\n" ); document.write( "b = -300
\n" ); document.write( "c = -1500\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------
\n" ); document.write( "------------------------------------------
\n" ); document.write( "Answers:
\n" ); document.write( "b = -300
\n" ); document.write( "c = -1500
\n" ); document.write( "
\n" ); document.write( "
\n" );