document.write( "Question 1135252: Use the position equation s=-16t^2+VoT+So , where s represents the height of an object (in feet), Vo represents the inital velocity of the object(in feet per second), So represents the initial height of the object(in feet), anf T represents the time(in seconds). A projectile is fired straight upward from ground level (So=0)with a initial velocity of 224 feet per second.
\n" ); document.write( "a). At what instant will it be back at ground level?
\n" ); document.write( "b). When will the height exceed 768 feet.
\n" ); document.write( "

Algebra.Com's Answer #752846 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
Use the position equation s=-16t^2+VoT+So , where s represents the height of an object (in feet), Vo represents the inital velocity of the object(in feet per second), So represents the initial height of the object(in feet), anf T represents the time(in seconds). A projectile is fired straight upward from ground level (So=0)with a initial velocity of 224 feet per second.
\n" ); document.write( "a). At what instant will it be back at ground level?
\n" ); document.write( "----
\n" ); document.write( "-16t^2+VoT+So = 0
\n" ); document.write( "-16t^2 + 224t = 0
\n" ); document.write( "16t = 224
\n" ); document.write( "t = 14
\n" ); document.write( "=========================\r
\n" ); document.write( "\n" ); document.write( "b). When will the height exceed 768 feet.
\n" ); document.write( "-16t^2+VoT+So = 768
\n" ); document.write( "-16t^2 + 224t = 768
\n" ); document.write( "-t^2 + 14t = 48
\n" ); document.write( "t^2 - 14t + 48 = 0
\n" ); document.write( "t = 6, t = 8
\n" ); document.write( "=================
\n" ); document.write( "--> it exceeds 768 ft from 6 < t < 8
\n" ); document.write( "
\n" ); document.write( "
\n" );