document.write( "Question 1134705: In what bases, b, does (b+6) divide into (5b+6) without any remainder?\r
\n" );
document.write( "\n" );
document.write( "Note: I’m guessing that there are many bases that this could function because the question says in what BASES! \n" );
document.write( "
Algebra.Com's Answer #752201 by ikleyn(52866) You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " The problem in the post is formulated by the very curved and twisted way, using outdated and antiquated language.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " In my opinion, the correct (adequate; straightforward and mathematically correct) formulation is AS FOLLOWS:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " Find integer non-negative numbers \"b\" such that\r\n" ); document.write( "\r\n" ); document.write( " (5b + 6) = 0 mod (b+6).\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( " So, the problem is about solving congruences.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solution\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " 5b + 6 = 5(b+6) - 30 + 6,\r\n" ); document.write( "\r\n" ); document.write( " 5b + 6 = 5*(b+6) - 24.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Therefore,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 5b + 6 = 0 mod (b+6) (1)\r\n" ); document.write( "\r\n" ); document.write( "if and only if\r\n" ); document.write( "\r\n" ); document.write( " -24 = 0 mod (b+6),\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "which is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " 24 = 0 mod (b+6). (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From (2), you easily find b = 0, 2, 6, 18.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Check.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " a) b = 0. Then 5b + 6 = 5*0 + 6 = 0 + 6 = 6. From the other side, b+6 = 6, and 6 = 0 mod 6. ! correct !\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " b) b = 2. Then 5b + 6 = 5*2 + 6 = 10 + 6 = 16. From the other side, b+6 = 8, and 16 = 0 mod 8. ! correct !\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " c) b = 6. Then 5b + 6 = 5*6 + 6 = 30 + 6 = 36. From the other side, b+6 = 12, and 36 = 0 mod 12. ! Correct !\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " d) b = 18. Then 5b + 6 = 5*18 + 6 = 90 + 6 = 96. From the other side, b+6 = 24, and 96 = 0 mod 24. ! Correct !\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, the problems has 4 solutions b = 0, 2, 6 and 18. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "=================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The formulations and wordings as in the original post, are used now in sections and circles of amateurs of the OLD ENGLISH only.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In professional Math it is not in use just at least 200 years, \n" ); document.write( "and in the School Math it is not in use more than 100 years.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It is some \"before-Newton's era\" language . . . \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |