document.write( "Question 1133782: trying to find the vertex, focus, latus rectum, directrix, axis of symmetry for the following equation\r
\n" ); document.write( "\n" ); document.write( "-2(x+3)=(y-1)^2
\n" ); document.write( "

Algebra.Com's Answer #751025 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
focus, latus rectum, directrix, axis of symmetry\r
\n" ); document.write( "\n" ); document.write( "\"-2%28x%2B3%29=%28y-1%29%5E2+\"\r
\n" ); document.write( "\n" ); document.write( "\"4p%28x-h%29=%28y-k%29%5E2\" is the standard equation for a right-left facing parabola with vertex at (\"h\",\"k\") and a focal length \"abs%28p%29\"\r
\n" ); document.write( "\n" ); document.write( "Rewrite\"-2%28x%2B3%29=%28y-1%29%5E2+\" in the standard form\r
\n" ); document.write( "\n" ); document.write( "as you can see \"4p=-2\"=>\"p=-1%2F2\"\r
\n" ); document.write( "\n" ); document.write( "\"+4%28-1%2F2%29%28x-%28-3%29%29=%28y-1%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( "Therefore parabola properties are: \r
\n" ); document.write( "\n" ); document.write( "(\"h\",\"k\") =(\"-3\",\"1\")
\n" ); document.write( "\"p=-1%2F2\"\r
\n" ); document.write( "\n" ); document.write( "Parabola is symmetric around the x-axis and so the focus lies a distance \"p\" from the center (\"-3%2Bp\", \"1\" ) along the x-axis \r
\n" ); document.write( "\n" ); document.write( "(\"-3-1%2F2\", \"1\" )....plug in \"p=-1%2F2\"\r
\n" ); document.write( "\n" ); document.write( "focus: (\"-7%2F2\", \"1\" )\r
\n" ); document.write( "\n" ); document.write( "directrix is
\n" ); document.write( "\"x=-3-p\"
\n" ); document.write( "\"x+=+-3-%28-1%2F2%29\"
\n" ); document.write( "\"x+=+-6%2F2%2B1%2F2\"
\n" ); document.write( "\"x+=+-5%2F2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "latus rectum:
\n" ); document.write( "\"-2%28x%2B3%29=%28y-1%29%5E2+\"............switch sides\r
\n" ); document.write( "\n" ); document.write( "\"%28y-1%29%5E2=-2%28x%2B3%29+\"......solve for \"y\"\r
\n" ); document.write( "\n" ); document.write( "\"y-1=+sqrt%28-2%28x%2B3%29+%29\"\r
\n" ); document.write( "\n" ); document.write( "\"y=+sqrt%28-2%28x%2B3%29+%29%2B1\"\r
\n" ); document.write( "\n" ); document.write( "\"y=+sqrt%282%28-x-3%29+%29%2B1\"\r
\n" ); document.write( "\n" ); document.write( "=> solutions:\r
\n" ); document.write( "\n" ); document.write( "\"y=+sqrt%282%29sqrt%28-x-3%29+%2B1\"\r
\n" ); document.write( "\n" ); document.write( "\"y=+1-sqrt%282%29sqrt%28-x-3%29+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Axis of symmetry is a line parallel to the x -axis which intersects the vertex:
\n" ); document.write( "\"y=1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" );