document.write( "Question 1133246: A researcher wishes to estimate the proportion of adults who have high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.04 with 90% confidence if
\n" );
document.write( "(a) she uses a previous estimate of 0.58?
\n" );
document.write( "(b) she does not use any prior estimates? \n" );
document.write( "
Algebra.Com's Answer #750706 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! Margin of Error(ME) = 0.04 \n" ); document.write( ": \n" ); document.write( "critical statistic(z) for a 90% confidence level is 1.645 \n" ); document.write( ": \n" ); document.write( "when standard deviation is not known, we use \n" ); document.write( ": \n" ); document.write( "sample size n = p*(1-p)*(z/ME)^2, where p is the proportion \n" ); document.write( ": \n" ); document.write( "a) n = 0.58 * (1-0.58)*(1.645/0.04)^2 = 411.9923 \n" ); document.write( ": \n" ); document.write( "sample size is 412 \n" ); document.write( ": \n" ); document.write( "b) p is not known, so use p = 0.50 \n" ); document.write( ": \n" ); document.write( "n = 0.50 * (1-0.50)*(1.645/0.04)^2 = 422.8164 \n" ); document.write( ": \n" ); document.write( "sample size is 423 \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( " |