document.write( "Question 1133246: A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.04 with 90​% confidence if
\n" ); document.write( "​(a) she uses a previous estimate of 0.58​?
\n" ); document.write( "​(b) she does not use any prior​ estimates?
\n" ); document.write( "

Algebra.Com's Answer #750706 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
Margin of Error(ME) = 0.04
\n" ); document.write( ":
\n" ); document.write( "critical statistic(z) for a 90% confidence level is 1.645
\n" ); document.write( ":
\n" ); document.write( "when standard deviation is not known, we use
\n" ); document.write( ":
\n" ); document.write( "sample size n = p*(1-p)*(z/ME)^2, where p is the proportion
\n" ); document.write( ":
\n" ); document.write( "a) n = 0.58 * (1-0.58)*(1.645/0.04)^2 = 411.9923
\n" ); document.write( ":
\n" ); document.write( "sample size is 412
\n" ); document.write( ":
\n" ); document.write( "b) p is not known, so use p = 0.50
\n" ); document.write( ":
\n" ); document.write( "n = 0.50 * (1-0.50)*(1.645/0.04)^2 = 422.8164
\n" ); document.write( ":
\n" ); document.write( "sample size is 423
\n" ); document.write( ":
\n" ); document.write( "
\n" ); document.write( "
\n" );