document.write( "Question 1133070: The ratio of the units digit to the tens digit of a two-digit number is one-half. The tens digit is two more than the units digit. Find the number. \n" ); document.write( "
Algebra.Com's Answer #750236 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Let \"xy\" be the number.  \r
\n" ); document.write( "\n" ); document.write( "\"x\" is the tens digit, \"y\" is the units digit\r
\n" ); document.write( "\n" ); document.write( "  The ratio of the units digit to the tens digit, \"y%2Fx\", is\"+1%2F2\".  This gives us the proportion\r
\n" ); document.write( "\n" ); document.write( "\"y%2Fx+=+1%2F2\"\r
\n" ); document.write( "\n" ); document.write( "The tens digit is \"2+\"more than the units digit; \r
\n" ); document.write( "\n" ); document.write( "\"x+=+y%2B2\" substituting in our proportion we have\r
\n" ); document.write( "\n" ); document.write( "\"y%2F%28y%2B2%29+=+1%2F2\"\r
\n" ); document.write( "\n" ); document.write( "Cross multiply:\r
\n" ); document.write( "\n" ); document.write( "\"y%2A2+=+%28y%2B2%29%2A1\"\r
\n" ); document.write( "\n" ); document.write( "\"2y+=+y%2B2\"\r
\n" ); document.write( "\n" ); document.write( "Subtract \"y\" from each side:\r
\n" ); document.write( "\n" ); document.write( "\"2y+-+y+=+y%2B2-y\"\r
\n" ); document.write( "\n" ); document.write( "\"y+=+2\"\r
\n" ); document.write( "\n" ); document.write( "then\r
\n" ); document.write( "\n" ); document.write( "\"x+=+y%2B2\"\r
\n" ); document.write( "\n" ); document.write( "\"x+=+2%2B2\"\r
\n" ); document.write( "\n" ); document.write( "\"x+=4\"\r
\n" ); document.write( "\n" ); document.write( "so, your two digit number is:\r
\n" ); document.write( "\n" ); document.write( "\"xy+=+42%C2%A0\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );