Algebra.Com's Answer #750145 by ikleyn(52781)  You can put this solution on YOUR website! . \n" );
document.write( "\r\n" );
document.write( "The area of the rectangle is equal to 36*45 = 1620 cm^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is , where \"a\" and \"b\" are the legs of a triangle;\r\n" );
document.write( "\r\n" );
document.write( "hence, a*b = 3240 cm^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus our task is to find right-angled triangles with integer sides \"a\" and \"b\" such that ab = 3240 and \r\n" );
document.write( "the hypotenuse is an integer number, too. \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The reasonable way to organize the search is to try all factors \"a\" and \"b\" of the number 3240 and check \r\n" );
document.write( "for each pair (a,b) whether the hypotenuse is integer.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "3240 = 324*10 = 18^2*10 = 2^3*3^4*5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is easy to perform such search in Excel : see the Table below.\r\n" );
document.write( "\r\n" );
document.write( "a b= 3240/a sqrt(a^2+b^2)\r\n" );
document.write( "-----------------------------\r\n" );
document.write( "\r\n" );
document.write( "1 3240 3240.00015432\r\n" );
document.write( "2 1620 1620.00123457\r\n" );
document.write( "4 810 810.00987648\r\n" );
document.write( "8 405 405.07900464\r\n" );
document.write( "3 1080 1080.00416666\r\n" );
document.write( "6 540 540.03333230\r\n" );
document.write( "12 270 270.26653511\r\n" );
document.write( "24 135 137.11673858\r\n" );
document.write( "9 360 360.11248243\r\n" );
document.write( "18 180 180.89776118\r\n" );
document.write( "36 90 96.93296653\r\n" );
document.write( "108 30 112.08925015\r\n" );
document.write( "27 120 123.00000000 <<<---===\r\n" );
document.write( "54 60 80.72174428\r\n" );
document.write( "108 30 112.08925015\r\n" );
document.write( "324 10 324.15428425\r\n" );
document.write( "5 648 648.01928984\r\n" );
document.write( "10 324 324.15428425\r\n" );
document.write( "20 162 163.22989922\r\n" );
document.write( "40 81 90.33825325\r\n" );
document.write( "15 216 216.52020691\r\n" );
document.write( "30 108 112.08925015\r\n" );
document.write( "60 54 80.72174428\r\n" );
document.write( "120 27 123.00000000 <<<---===\r\n" );
document.write( "45 72 84.90583019\r\n" );
document.write( "90 36 96.93296653\r\n" );
document.write( "180 18 180.89776118\r\n" );
document.write( "540 6 540.03333230\r\n" );
document.write( "135 24 137.11673858\r\n" );
document.write( "270 12 270.26653511\r\n" );
document.write( "540 6 540.03333230\r\n" );
document.write( "1620 2 1620.00123457\r\n" );
document.write( "3240 1 3240.00015432\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From the table, there is, actually, only ONE such a triangle with the legs 27 and 120 centimeters and the hypotenuse of 123 centimeters.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Its perimeter is 27 + 120 + 127 = 270 centimeters. ANSWER\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved. // The primitive Pythagorean triple for this triangle is (9, 40, 41).\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |