document.write( "Question 1132562: solve: 1+cos(6x)-2cos(4x)=0 on [0 ,pi] \n" ); document.write( "
Algebra.Com's Answer #749711 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "1 + cos(6x) - 2cos(4x) = 0\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The idea of solution is to express cos(6x) via cos(2x) and express cos(4x) via cos(2x) to get in this way\r\n" );
document.write( "\r\n" );
document.write( "an equation for cos(2x) uniformly in the left side.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "For it, use widely known formulas of Trigonometry\r\n" );
document.write( "\r\n" );
document.write( "    cos(3a) = \"4%2Acos%5E3%28a%29+-+3%2Acos%28a%29\",      (1)   and\r\n" );
document.write( "\r\n" );
document.write( "    cos(2a) = \"2%2Acos%5E2%28a%29+-+1\".           (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Use a = 2x;  then formulas (1) and (2) give you\r\n" );
document.write( "\r\n" );
document.write( "    cos(6x) = \"4%2Acos%5E3%282x%29+-+3%2Acos%282x%29\",     (3)   and\r\n" );
document.write( "\r\n" );
document.write( "    cos(4x) = \"2%2Acos%5E2%282x%29+-+1\".           (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now substitute (3) and (4) into your basic equation. You will get\r\n" );
document.write( "\r\n" );
document.write( "    \"1+%2B+4%2Acos%5E3%282x%29+-+3%2Acos%282x%29+-+4%2Acos%5E2%282x%29+%2B+2\" = 0,    or\r\n" );
document.write( "\r\n" );
document.write( "    \"4%2Acos%5E3%282x%29+-+4%2Acos%5E2%282x%29+-+3%2Acos%282x%29+%2B+3\" = 0.    (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In the last equation, introduce new variable  y = cos(2x).  You will get then\r\n" );
document.write( "\r\n" );
document.write( "    \"4y%5E3+-+4y%5E2+-+3y+%2B+3\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "You can group the terms and factor it in this way\r\n" );
document.write( "\r\n" );
document.write( "    \"4y%5E2%2A%28y-1%29+-+3%2A%28y-1%29\" = 0,\r\n" );
document.write( "\r\n" );
document.write( "    \"%28y-1%29%2A%284y%5E2-3%29\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So the roots for y are  \"y%5B1%5D\" = 1;  \"y%5B2%5D\" = \"sqrt%283%29%2F2\"  and  \"y%5B3%5D\" = -\"sqrt%283%29%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we have three cases to analyse separately:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Case 1.  \"y%5B1%5D\" = 1  ====>  cos(2x) = 1  ====>  2x = 0  or  \"2%2Api\"  ====>  x = 0  or  x = \"pi\".  \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Case 2.  \"y%5B2%5D\" = \"sqrt%283%29%2F2\"  ====>  cos(2x) = \"sqrt%283%29%2F2\"  ====>  2x = \"pi%2F6\"  or  2x = \"11pi%2F6\"  ====>  x = \"pi%2F12\"  or  x = \"11pi%2F12\". \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Case 3.  \"y%5B3%5D\" = -\"sqrt%283%29%2F2\"  ====>  cos(2x) = -\"sqrt%283%29%2F2\"  ====>  2x = \"5pi%2F6\"  or  2x = \"7pi%2F6\"  ====>  x = \"5pi%2F12\"  or  x = \"7pi%2F12\". \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  In all, there are 6 solutions for x in the given interval:\r\n" );
document.write( "\r\n" );
document.write( "         x = 0;  \"pi%2F12\";  \"5pi%2F12\";  \"7pi%2F12\";  \"11pi%2F12\"  and  \"pi\".\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );