document.write( "Question 1132212: Use natural deduction to derive the conclusion of the following arguments. Do not use conditional proof or indirect proof.\r
\n" );
document.write( "\n" );
document.write( "1. (D & E) ⊃ (F & G)
\n" );
document.write( "2. (~E v ~ D) ⊃ (H • I )
\n" );
document.write( "3. ~F\r
\n" );
document.write( "\n" );
document.write( "Conclusion: I \n" );
document.write( "
Algebra.Com's Answer #749198 by solver91311(24713)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( " \r\n" ); document.write( "1. (D & E) -> (F & G)\r\n" ); document.write( "2. (~E V ~D) -> (H & I)\r\n" ); document.write( "3. ~F | I\r\n" ); document.write( "\r\n" ); document.write( "4. ~F V ~G 3. Disjuction Introduction\r\n" ); document.write( "5. ~(F & G) 4. DeMorgan\r\n" ); document.write( "6. ~(D & E) 1. Modus Tollens\r\n" ); document.write( "7. ~E V ~D 6. DeMorgan\r\n" ); document.write( "8. H & I 2. Modus Ponens\r\n" ); document.write( "9. Therefore I 8. Conjunction Elimination\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note Disjunction Introduction is also called Addition. Conjunction Elimination is also called Simplification. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "John \n" ); document.write( " \n" ); document.write( "My calculator said it, I believe it, that settles it \n" ); document.write( " ![]() \n" ); document.write( " |