Algebra.Com's Answer #749002 by ikleyn(52781)  You can put this solution on YOUR website! . \n" );
document.write( "\r\n" );
document.write( " + = , (1) \r\n" );
document.write( "\r\n" );
document.write( "x/2 + y/5 = 5. (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "This system of equations in non-linear.\r\n" );
document.write( "\r\n" );
document.write( "To make the solution easier, I will introduce NEW VARIABLES a = , b = . Then the system takes the form\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "a + b = (3)\r\n" );
document.write( "\r\n" );
document.write( " + = 5 (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To solve it, first simplify equation (4):\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " + = 5 ====> = 5 ====> replace a+b by , based on (3) ====> = 5 ====> ab = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next, from (3), express b = - a and substitute it into equation ab = . You will get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " = ,\r\n" );
document.write( "\r\n" );
document.write( " -6a^2 + 5a = 1\r\n" );
document.write( "\r\n" );
document.write( " 6a^2 - 5a + 1 = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Solve the last quadratic equation using the quadratic formula.\r\n" );
document.write( "\r\n" );
document.write( "You will get two solutions: a= and a= .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus, the system (3)-(4) has two solutions:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " 1) a= , b= - = = , \r\n" );
document.write( "\r\n" );
document.write( "and\r\n" );
document.write( "\r\n" );
document.write( " 2) a = , b= - = = = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now you need to return from \"a\" and \"b\" to x and y, via the formulas a = , b = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "By doing so, you get two solutions for the original system:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "1) x = = = 4; y = = = 15.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "2) x = = = 6; y = = = 10.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer. The system has two solutions 1) x= 4; y= 15 and 2) x= 6, y= 10.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "You may check that the solution is correct by substituting the found values into the original equations.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "----------------\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "I am very glad that the tutor @MathLover1 placed her solution here.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Comparing these two, you can see how many tons of calculations I saved you from, using my substitutions ! ! ! \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "==============\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "To see other similar solved problems for systems of two non-linear equations in two unknowns, look into the lessons\r \n" );
document.write( "\n" );
document.write( " - Solving systems of non-linear equations by reducing to linear ones \r \n" );
document.write( "\n" );
document.write( " - Solving systems of non-linear equations in two unknowns using the Cramer's rule \r \n" );
document.write( "\n" );
document.write( "in this site.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |