document.write( "Question 1131761: Given: ∆ABC –iso. ∆, m∠BAC = 120°
\n" );
document.write( "
\n" );
document.write( "AH
\n" );
document.write( " ⊥
\n" );
document.write( "BC
\n" );
document.write( " ,
\n" );
document.write( "HD
\n" );
document.write( " ⊥
\n" );
document.write( "AC
\n" );
document.write( "
\n" );
document.write( " AD = a cm, HD = b cm
\n" );
document.write( " Find: P∆ADH \n" );
document.write( "
Algebra.Com's Answer #748441 by greenestamps(13200)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The vertex angle BAC is 120 degrees; the angle bisector creates two angles of 60 degrees each. \n" ); document.write( "Since the triangle is isosceles, the angle bisector AH is perpendicular to side BC. \n" ); document.write( "Then triangle ADH is a 30-60-90 right triangle. \n" ); document.write( "Given AD = a and HD = b, with ADH a 30-60-90 right triangle, we know AH = 2a. So the perimeter of triangle ADH is 2a+a+b = 3a+b. \n" ); document.write( " |