document.write( "Question 1129764: What are the relative minimums and maximums of your coaster with a polynomial of x^5-4x^4-7x^3+14x^2-44x+120 \n" ); document.write( "
Algebra.Com's Answer #746357 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Relative maximums are the highest points of a section of a graph
\n" ); document.write( "Relative minimums are the lowest points of a section of a graph\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "function \"x%5E5-4x%5E4-7x%5E3%2B14x%5E2-44x%2B120+\"has local maximum and minimum where first derivative is equal to zero:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and it is \"5+x%5E4+-+16+x%5E3+-+21+x%5E2+%2B+28+x+-+44=0\" which is:\r
\n" ); document.write( "\n" ); document.write( "\"x=+-1.89\"
\n" ); document.write( "\"x=4.03\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "if \"x=+-1.89\"
\n" ); document.write( "\"y=%28-1.89%29%5E5-4%28-1.89%29%5E4-7%28-1.89%29%5E3%2B14%28-1.89%29%5E2-44%28-1.89%29%2B120+\"
\n" ); document.write( "\"y=225.27\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Relative maximum: at point (\"-1.89\",\"225.27\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "if \"x=+-1.89\"
\n" ); document.write( "\"y=%284.03%29%5E5-4%284.03%29%5E4-7%284.03%29%5E3%2B14%284.03%29%5E2-44%284.03%29%2B120+\"
\n" ); document.write( "\"y=-280.19\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Relative minimum: at point (\"4.03\",\"-280.19\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );