document.write( "Question 1129620: prove n^3 + 2n is divisible by 3 induction \n" ); document.write( "
Algebra.Com's Answer #746195 by ikleyn(52784)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The base of induction\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " At n= 1 n^3 + 2n = 1^3 + 2*1 = 3 is divisible by 3.\r\n" ); document.write( "\r\n" ); document.write( " Thus the base of induction is valid.\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The induction step\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " Let assume that P(n) = n^3 + 2n is divisible by 3,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Then P(n+1) = (n+1)^3 + 2*(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2 = \r\n" ); document.write( "\r\n" ); document.write( " = (re-group) = (n^3 + 2n) + (3n^2 + 3n + 3) = P(n) + 3*(n^2 + n +1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " So, P(n+1) is the sum of P(N) and the other addend, which is multiple of 3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Thus, if P(n) is divisible by n, then P(n+1) is divisible by 3, too.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " The inductive step is proven to be valid.\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, according to the Mathematical induction principle, the statement is true for all positive integer n.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The proof is completed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On the method of Mathematical induction see the lessons\r \n" ); document.write( "\n" ); document.write( " - Mathematical induction and arithmetic progressions\r \n" ); document.write( "\n" ); document.write( " - Mathematical induction and geometric progressions\r \n" ); document.write( "\n" ); document.write( " - Mathematical induction for sequences other than arithmetic or geometric\r \n" ); document.write( "\n" ); document.write( " - Proving inequalities by the method of Mathematical Induction\r \n" ); document.write( "\n" ); document.write( " - OVERVIEW of lessons on the Method of Mathematical induction\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lesson is the part of this online textbook under the topic \n" ); document.write( "\"Method of Mathematical induction\".\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-II \n" ); document.write( "https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "into your archive and use when it is needed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |