document.write( "Question 1129426: construct a formal proof of validity for the following argument.
\n" );
document.write( "1. (M ⊃ N) ● (O ⊃ P)
\n" );
document.write( "
\n" );
document.write( "2. ~ N v ~ P
\n" );
document.write( "
\n" );
document.write( "3. ~ (M ● O) ⊃ Q
\n" );
document.write( "
\n" );
document.write( "4. ∴ Q \n" );
document.write( "
Algebra.Com's Answer #746007 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1. (M ⊃ N) ●(O ⊃ P) \r\n" ); document.write( "2. ~ N v ~ P \r\n" ); document.write( "3. ~ (M ● O) ⊃ Q / ∴ Q\r\n" ); document.write( "\r\n" ); document.write( " | 4. ~Q AIP\r\n" ); document.write( " | 5. ~~(M ● O) 3,MT\r\n" ); document.write( " | 6. M ● O 5,DN\r\n" ); document.write( " | 7. M 6,simp\r\n" ); document.write( " | 8. O ● M 6,commutation\r\n" ); document.write( " | 9. O 8,simp\r\n" ); document.write( " |10. M ⊃ N 1,simp\r\n" ); document.write( " |11. N 10,MP\r\n" ); document.write( " |12. (O ⊃ P) ● (M ⊃ N) 1,commutation \r\n" ); document.write( " |13. O ⊃ P 12,simp\r\n" ); document.write( " |14. P 13,9,MP\r\n" ); document.write( " |15. N ● P 11,13,conjunction\r\n" ); document.write( " |16. ~(N ● P) 2, deMorgan\r\n" ); document.write( " |17. (N ● P)● ~(N ● P) 15,16, conjunction\r\n" ); document.write( "18. Q lines 4-17 Indirect Proof, (#17 is a contradiction)\r\n" ); document.write( "\r\n" ); document.write( "Edwin \n" ); document.write( " \n" ); document.write( " |