document.write( "Question 1127966: A rancher has 500 ft of fencing with which to build a rectangular corral alongside an existing fence. Determine the dimensions of the corral that will maximize the enclosed area.Be sure to define a variable and write an equation. \n" ); document.write( "
Algebra.Com's Answer #744453 by josgarithmetic(39617)\"\" \"About 
You can put this solution on YOUR website!
One length of x
\n" ); document.write( "Two lengths of y
\n" ); document.write( "Area A
\n" ); document.write( "\"x%2B2y=500\"
\n" ); document.write( "\"A=xy\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"A=%28500-2y%29y\"-------this area will have a maximum point\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"A=500y-2y%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"dA%2Fdy=500-4y=0\"\r
\n" ); document.write( "\n" ); document.write( "\"250-2y=0\"\r
\n" ); document.write( "\n" ); document.write( "\"250=2y\"\r
\n" ); document.write( "\n" ); document.write( "\"125=y\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Dimensions for Maximum area
\n" ); document.write( "250 feet by 125 feet
\n" ); document.write( "
\n" );