document.write( "Question 1125975: A cylindrical package to be sent by a postal service can have a maximum combined length and girth (perimeter of a cross section) of 132 inches. Find the dimensions of the package of maximum volume that can be sent. (The cross section is circular.) \r
\n" ); document.write( "\n" ); document.write( "Radius = ? in
\n" ); document.write( "Length = ? in
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #742309 by josgarithmetic(39617)\"\" \"About 
You can put this solution on YOUR website!
r radius
\n" ); document.write( "x length
\n" ); document.write( "combined length and girth, \"x%2B2pi%2Ar=132\"
\n" ); document.write( "volume \"x%2Api%2Ar%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"v=%28132-2pi%2Ar%29pi%2Ar%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"v=132pi%2Ar%5E2-2pi%5E2%2Ar%5E3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"dv%2Fdr=264pi%2Ar-6pi%5E2%2Ar%5E2=0\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"44r-pi%5E2%2Ar%5E2=0\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%2844-pi%5E2%2Ar%29=0\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "r=0 makes no sense here.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"44=pi%5E2%2Ar\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"highlight_green%28r=44%2Fpi%5E2%29\"-------radius for maximum volume.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=132-2pi%2A%2844%2Fpi%5E2%29\"\r
\n" ); document.write( "\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "
\n" );