document.write( "Question 1125712: Write the equation of the perpendicular bisector of the line segment with endpoints (-4,1) and (4,-3) \n" ); document.write( "
Algebra.Com's Answer #742022 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
Write the equation of the perpendicular bisector of the line segment with endpoints
\n" ); document.write( "(\"-4\",\"1\") and (\"4\",\"-3\") \r
\n" ); document.write( "\n" ); document.write( " first find the equation of the line containing the segment with endpoints at (\"-4\",\"1\") and (\"4\",\"-3\") :\r
\n" ); document.write( "\n" ); document.write( "\"y=mx%2Bb\"\r
\n" ); document.write( "\n" ); document.write( "use given points to find a slope: \r
\n" ); document.write( "\n" ); document.write( "\"m=%28y%5B1%5D-y%5B2%5D%29%2F%28x%5B1%5D-x%5B2%5D%29\"\r
\n" ); document.write( "\n" ); document.write( "\"m=%281-%28-3%29%29%2F%28-4-4%29\"
\n" ); document.write( "\"m=%281%2B3%29%2F%28-4-4%29\"
\n" ); document.write( "\"m=+4%2F%28-8%29\"
\n" ); document.write( "\"m=+-1%2F2\"\r
\n" ); document.write( "\n" ); document.write( "\"y=-%281%2F2%29x%2Bb\"\r
\n" ); document.write( "\n" ); document.write( "use one point to find \"b\"\r
\n" ); document.write( "\n" ); document.write( "\"y=-%281%2F2%29x%2Bb\"...........(\"-4\",\"1\") \r
\n" ); document.write( "\n" ); document.write( "\"1=-%281%2F2%29%28-4%29%2Bb\"
\n" ); document.write( "\"1=+2%2Bb\"
\n" ); document.write( "\"1-2=b\"
\n" ); document.write( "\"b=-1\"\r
\n" ); document.write( "\n" ); document.write( "equation is: \"y=-%281%2F2%29x-1\"\r
\n" ); document.write( "\n" ); document.write( "now, recall:
\n" ); document.write( "A bisector cuts a line segment into two congruent parts. A segment bisector is called a perpendicular bisector when the bisector intersects the segment at a right angle.\r
\n" ); document.write( "\n" ); document.write( "the perpendicular bisector passes through the midpoint\r
\n" ); document.write( "\n" ); document.write( "so, first find the coordinates of the midpoint:\r
\n" ); document.write( "\n" ); document.write( "(\"%28-4%2B4%29%2F2\",\"%281%2B%28-3%29%29%2F2\")\r
\n" ); document.write( "\n" ); document.write( "(\"0\",\"-1\")\r
\n" ); document.write( "\n" ); document.write( "since bisector perpendicular to line segment, it is also perpendicular to line \"y=-%281%2F2%29x-1\"\r
\n" ); document.write( "\n" ); document.write( "and perpendicular lines have slopes negative reciprocal to each other\r
\n" ); document.write( "\n" ); document.write( "so, the perpendicular bisector will have a slope \"m%5Bp%5D=-1%2Fm\"
\n" ); document.write( "\"m%5Bp%5D=%28-1%29%2F%28-1%2F2%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \"m%5Bp%5D=+2\"\r
\n" ); document.write( "\n" ); document.write( "\"y=+2x%2Bb\"....use midpoint (\"0\",\"-1\") to find \"b\"\r
\n" ); document.write( "\n" ); document.write( "\"-1=+2%2A0%2Bb\"\r
\n" ); document.write( "\n" ); document.write( "\"b=-1\"\r
\n" ); document.write( "\n" ); document.write( "\"highlight%28y=+2x-1%29\"->the equation of the perpendicular bisector \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );