Algebra.Com's Answer #741078 by ikleyn(52803)  You can put this solution on YOUR website! . \n" );
document.write( "The roots of the polynomial equation 2x^3 - 8x^2 + 3x + 5 = 0 are alpha, beta and gamma. \n" );
document.write( "Find the polynomial equation with roots alpha^2, beta^2, gamma^2 \n" );
document.write( "~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "The given equation\r\n" );
document.write( "\r\n" );
document.write( " = 0 (1)\r\n" );
document.write( "\r\n" );
document.write( "is equivalent to\r\n" );
document.write( "\r\n" );
document.write( " = 0 (2) (all the coefficients of (1) are divided by 2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Equation (2) has the same roots , and as equation (1). Therefore, \r\n" );
document.write( "\r\n" );
document.write( " = , (3)\r\n" );
document.write( "\r\n" );
document.write( "and, according to Vieta's theorem\r\n" );
document.write( "\r\n" );
document.write( " = 4, = 1.5, = -2.5. (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, an equation with the roots , and is\r\n" );
document.write( "\r\n" );
document.write( " = 0. (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "By the Vieta's theorem (or by applying FOIL directly), the coefficients of the left side polynomial are\r\n" );
document.write( "\r\n" );
document.write( " at x^2; (6)\r\n" );
document.write( "\r\n" );
document.write( " at x; and (7)\r\n" );
document.write( "\r\n" );
document.write( " as the constant term. (8)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, my task now is to express the coefficient (6), (7) and (8) via the coefficients (4) of the equation (2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Regarding , it is easy:\r\n" );
document.write( "\r\n" );
document.write( " = = = 16-3 = 13.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the coefficient at x^2 of the polynomial (5) is = -13.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Regarding , it is easy, too :\r\n" );
document.write( "\r\n" );
document.write( " = = = 6.25.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the constant term of the polynomial (5) is = -6.25.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Regarding , it is slightly more long way :\r\n" );
document.write( "\r\n" );
document.write( " = 1.5 of (4) implies (squaring both sides)\r\n" );
document.write( "\r\n" );
document.write( " 2.25 = = \r\n" );
document.write( "\r\n" );
document.write( " = + = substituting the known values from (4) = \r\n" );
document.write( "\r\n" );
document.write( " = + 2*(-2.5)*4,\r\n" );
document.write( "\r\n" );
document.write( "which implies\r\n" );
document.write( "\r\n" );
document.write( " = 2.25 + 20 = 22.25.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we know all three coefficients of the polynomial (5)\r\n" );
document.write( "\r\n" );
document.write( " = -13 at x^2; \r\n" );
document.write( "\r\n" );
document.write( " = 22.25 at x; and \r\n" );
document.write( "\r\n" );
document.write( " = -6.25 as the constant term. \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer. The polynomial equation under the question is = 0.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( " ********************\r \n" );
document.write( "\n" );
document.write( " * * * SOLVED. * * * \r \n" );
document.write( "\n" );
document.write( " ********************\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |