document.write( "Question 1124747: The roots of the polynomial equation 2x^3 - 8x^2 + 3x + 5 = 0 are alpha, beta and gamma.
\n" ); document.write( "Find the polynomial equation with roots alpha^2, beta^2, gamma^2\r
\n" ); document.write( "\n" ); document.write( "Any help is so much appreciated!
\n" ); document.write( "

Algebra.Com's Answer #741078 by ikleyn(52803)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "The roots of the polynomial equation 2x^3 - 8x^2 + 3x + 5 = 0 are alpha, beta and gamma.
\n" ); document.write( "Find the polynomial equation with roots alpha^2, beta^2, gamma^2
\n" ); document.write( "~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "The given equation\r\n" );
document.write( "\r\n" );
document.write( "    \"2x%5E3+-+8x%5E2+%2B+3x+%2B+5\" = 0        (1)\r\n" );
document.write( "\r\n" );
document.write( "is equivalent to\r\n" );
document.write( "\r\n" );
document.write( "    \"x%5E3+-+4x%5E2+%2B+1.5x+%2B+2.5\" = 0     (2)  (all the coefficients of (1) are divided by 2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Equation (2) has the same roots  \"alpha\",  \"beta\"  and  \"gamma\"  as equation (1).  Therefore, \r\n" );
document.write( "\r\n" );
document.write( "    \"x%5E3+-+4x%5E2+%2B+1.5x+%2B+2.5\" = \"%28x-alpha%29%2A%28x-beta%29%2A%28x-gamma%29\",                       (3)\r\n" );
document.write( "\r\n" );
document.write( "and, according to Vieta's theorem\r\n" );
document.write( "\r\n" );
document.write( "    \"alpha+%2B+beta+%2B+gamma\" = 4,  \"alpha%2Abeta%2Balpha%2Agamma%2Bbeta%2Agamma\" = 1.5,  \"alpha%2Abeta%2Agamma\" = -2.5.      (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, an equation with the roots  \"alpha%5E2\",  \"beta%5E2\"  and  \"gamma%5E2\"  is\r\n" );
document.write( "\r\n" );
document.write( "    \"%28x-alpha%5E2%29%2A%28x-beta%5E2%29%2A%28x-gamma%5E2%29\" = 0.                     (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "By the Vieta's theorem (or by applying FOIL directly), the coefficients of the left side polynomial are\r\n" );
document.write( "\r\n" );
document.write( "    \"-%28alpha%5E2%2Bbeta%5E2%2Bgamma%5E2%29\"  at  x^2;                          (6)\r\n" );
document.write( "\r\n" );
document.write( "    \"alpha%5E2%2Abeta%5E2%2Balpha%5E2%2Agamma%5E2%2Bbeta%5E2%2Agamma%5E2\"  at x;   and                 (7)\r\n" );
document.write( "\r\n" );
document.write( "    \"-alpha%5E2%2Abeta%5E2%2Agamma%5E2\"  as the constant term.                (8)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, my task now is to express the coefficient (6), (7) and (8)  via  the coefficients (4) of the equation (2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Regarding   \"%28alpha%5E2%2Bbeta%5E2%2Bgamma%5E2%29\",  it is easy:\r\n" );
document.write( "\r\n" );
document.write( "    \"%28alpha%5E2%2Bbeta%5E2%2Bgamma%5E2%29\" = \"%28alpha%2Bbeta%2Bgamma%29%5E2-2%2A%28alpha%2Abeta%2Balpha%2Agamma%2Bbeta%2Agamma%29\" = \"4%5E2+-+2%2A1.5\" = 16-3 = 13.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the coefficient at x^2 of the polynomial (5)  is  \"-%28alpha%5E2%2Bbeta%5E2%2Bgamma%5E2%29\" = -13.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Regarding  \"-alpha%5E2%2Abeta%5E2%2Agamma%5E2\",  it is easy, too :\r\n" );
document.write( "\r\n" );
document.write( "    \"alpha%5E2%2Abeta%5E2%2Agamma%5E2\" = \"%28alpha%2Abeta%2Agamma%29%5E2\" = \"%28-2.5%29%5E2\" = 6.25.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the constant term of the polynomial (5)  is  \"-%28alpha%5E2%2Abeta%5E2%2Agamma%5E2%29\" = -6.25.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Regarding  \"alpha%5E2%2Abeta%5E2%2Balpha%5E2%2Agamma%5E2%2Bbeta%5E2%2Agamma%5E2\", it is slightly more long way :\r\n" );
document.write( "\r\n" );
document.write( "    \"alpha%2Abeta%2Balpha%2Agamma%2Bbeta%2Agamma\" = 1.5  of (4)  implies (squaring both sides)\r\n" );
document.write( "\r\n" );
document.write( "    2.25 =  = \r\n" );
document.write( "\r\n" );
document.write( "         = \"alpha%5E2%2Abeta%5E2+%2B+alpha%5E2%2Abeta%5E2+%2B+beta%5E2%2Agamma%5E2\" + \"2%2A%28alpha%2Abeta%2Agamma%29%2A%28alpha%2Bbeta%2Bgamma%29\" = substituting the known values from (4) = \r\n" );
document.write( "\r\n" );
document.write( "         = \"alpha%5E2%2Abeta%5E2+%2B+alpha%5E2%2Abeta%5E2+%2B+beta%5E2%2Agamma%5E2\" + 2*(-2.5)*4,\r\n" );
document.write( "\r\n" );
document.write( "which implies\r\n" );
document.write( "\r\n" );
document.write( "    \"alpha%5E2%2Abeta%5E2+%2B+alpha%5E2%2Abeta%5E2+%2B+beta%5E2%2Agamma%5E2\" = 2.25 + 20 = 22.25.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we know all three coefficients of the polynomial (5)\r\n" );
document.write( "\r\n" );
document.write( "    \"-%28alpha%5E2%2Bbeta%5E2%2Bgamma%5E2%29\" = -13  at  x^2;          \r\n" );
document.write( "\r\n" );
document.write( "    \"alpha%5E2%2Abeta%5E2%2Balpha%5E2%2Agamma%5E2%2Bbeta%5E2%2Agamma%5E2\" = 22.25 at x;   and \r\n" );
document.write( "\r\n" );
document.write( "    \"-alpha%5E2%2Abeta%5E2%2Agamma%5E2\" = -6.25 as the constant term.   \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer.  The polynomial equation under the question is  \"x%5E3+-13x%5E2+%2B+22.25x+-+6.25\" = 0.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "            ********************\r
\n" ); document.write( "\n" ); document.write( "             * * * SOLVED. * * * \r
\n" ); document.write( "\n" ); document.write( "            ********************\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );