document.write( "Question 1124606: Let A and B be events with P(A)=1/3, P(B)=1/4 and P(AUB)=1/2. Find the P(A ∩ B' ). \n" ); document.write( "
Algebra.Com's Answer #740944 by ikleyn(52814)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "You may consider A and B as the subsets of the universal set U.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then  (A ∩ B') = A \ (A ∩ B).       ( Elements of A that are not in B ) \r\n" );
document.write( "\r\n" );
document.write( "                                     The sign \" \ \" means subtraction of sets )\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, you need first to find  P(A ∩ B)  and  then subtract it from P(A).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Step 1.   P((A ∩ B) = P(A) + P(B) - P(AUB) = \"1%2F3\" + \"1%2F4\" - \"1%2F2\" = \"%284%2B3-6%29%2F12\" = \"1%2F12\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Step 2.   P(A ∩ B') = P(A \ (A ∩ B)) = P(A) - P((A ∩ B) = \"1%2F3\" - \"1%2F12\" = \"4%2F12\" - \"1%2F12\" = \"3%2F12\" = \"1%2F4\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer.  P(A ∩ B') = \"1%2F4\"\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );