document.write( "Question 1123975: For the function f(x) = −5x^3 + 3x^5 , find all critical values and determine whether each represents a local maximum, local minimum or neither. Then find the absolute extrema on the interval [−2, 2]. \n" ); document.write( "
Algebra.Com's Answer #740355 by josgarithmetic(39616)![]() ![]() ![]() You can put this solution on YOUR website! \"Critical values\"?\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The local extreme points are at x of -1, 0, and 1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Maximum at x=-1, minimum at x=1. \n" ); document.write( "Inflexion which is not an extreme point for x at 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You may be able to use second-derivative to help with these. \n" ); document.write( " |