document.write( "Question 1123975: For the function f(x) = −5x^3 + 3x^5 , find all critical values and determine whether each represents a local maximum, local minimum or neither. Then find the absolute extrema on the interval [−2, 2]. \n" ); document.write( "
Algebra.Com's Answer #740355 by josgarithmetic(39616)\"\" \"About 
You can put this solution on YOUR website!
\"Critical values\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"df%2Fdx=-15x%5E2%2B15x%5E4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"15x%5E4-15x%5E2=0\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E4-x%5E2=0\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2%28x%5E2-1%29=0\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2%28x-1%29%28x%2B1%29=0\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The local extreme points are at x of -1, 0, and 1.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Maximum at x=-1, minimum at x=1.
\n" ); document.write( "Inflexion which is not an extreme point for x at 0.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You may be able to use second-derivative to help with these.
\n" ); document.write( "
\n" );