document.write( "Question 1123946: In △ABC the angle bisectors drawn from vertices A and B intersect at point D. Find ∠ADB if:
\n" ); document.write( "a. ∠A =α, ∠B=β
\n" ); document.write( "b. ∠C= γ
\n" ); document.write( "

Algebra.Com's Answer #740315 by ikleyn(52814)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "    < ADB = 180° - (half of < A + half of < B)     (1)    (as the sum of interior angles of the triangle ABD)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From the other side\r\n" );
document.write( "\r\n" );
document.write( "      < A + < B + < C = 180°  ====>  half of < A + half of < B = 90° - half < C.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, you can continue (1) in this way :\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    < ADB = 180° - (half of < A + half of < B) = 180° - (90° - half < C) = 90° + half < C.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Or, in terms of  \"alpha\",  \"beta\"  and  \"gamma\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    < ADB = \"180%5Eo+-+0.5%2A%28alpha+%2B+beta%29\" = \"90%5Eo+%2B+0.5%2Agamma\".\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );