document.write( "Question 1123946: In △ABC the angle bisectors drawn from vertices A and B intersect at point D. Find ∠ADB if:
\n" );
document.write( "a. ∠A =α, ∠B=β
\n" );
document.write( "b. ∠C= γ \n" );
document.write( "
Algebra.Com's Answer #740315 by ikleyn(52814)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( " < ADB = 180° - (half of < A + half of < B) (1) (as the sum of interior angles of the triangle ABD)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From the other side\r\n" ); document.write( "\r\n" ); document.write( " < A + < B + < C = 180° ====> half of < A + half of < B = 90° - half < C.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Therefore, you can continue (1) in this way :\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " < ADB = 180° - (half of < A + half of < B) = 180° - (90° - half < C) = 90° + half < C.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Or, in terms of\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |