document.write( "Question 1123840: if u= int (f(sin2x)sinx)dx on [0 ,pi/2] and v= int (f(cos2x)cosx)dx on [0 ,pi/2]
\n" ); document.write( " then u/v =......
\n" ); document.write( "

Algebra.Com's Answer #740214 by ikleyn(52865)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In order for the problem makes sense, it should be written in this precise form\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "    if u= int (f(sin^2(x))sinx)dx on [0 ,pi/2] and v= int (f(cos^2(x))cosx)dx on [0 ,pi/2]\r\n" );
document.write( " then u/v =......\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solution\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Use the change of variables\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    u = int (f(sin^2(x))sinx)dx on [0 ,pi/2] = int (-f(sin^2(x))d(cos(x)) on [0 ,pi/2] = int (-f(1-cos^2(x))d(cos(x)) on [0 ,pi/2] =\r\n" );
document.write( "\r\n" );
document.write( "      = -int (f(1-t^2)dt  on [1,0]  (where t = cos(x) );\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    v = int (f(cos^2(x))cosx)dx [0 ,pi/2] = int (f(cos^2(x))d(sin(x))dx [0 ,pi/2] = int (f(1-sin^2(x))d(sin(x))dx [0 ,pi/2] = \r\n" );
document.write( "\r\n" );
document.write( "      = int (f(1-t^2)dt on [0,1]  (where t = sin(x) ).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "   Since  -int (f(1-t^2)dt  on [1,0] = int (f(1-t^2)dt on [0,1],  we have  \"u%2Fv\" = 1.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );