document.write( "Question 1123636: Find all zeros using synthetic division. Show your work.\r
\n" );
document.write( "\n" );
document.write( "Q(x)= x^3 + (k+3)x^2 - k(2k-3)x - 6k^2 where k is a real number \n" );
document.write( "
Algebra.Com's Answer #740098 by Edwin McCravy(20054)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "Q(x)= x³ + (k+3)x² - k(2k-3)x - 6k²\r\n" ); document.write( "\r\n" ); document.write( "Multiply out the coefficient -k(2k-3)\r\n" ); document.write( "\r\n" ); document.write( "Q(x)= x³ + (k+3)x² + (-2k²+3k)x - 6k²\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The potential zeros are ± the factors of -6k², which are\r\n" ); document.write( "\r\n" ); document.write( "±1, ±2, ±3, ±6, ±k, ±2k, ±3k, ±6k, ±k², ±2k², ±3k², ±6k²\r\n" ); document.write( "\r\n" ); document.write( "That's a huge bunch to try! (lol), but I have a hunch that one\r\n" ); document.write( "of the zeros is k. Let's see if I'm lucky:\r\n" ); document.write( "\r\n" ); document.write( " k | 1 k+3 -2k²+3k -6k \r\n" ); document.write( " | k 2k²+3k 6k \r\n" ); document.write( " ------------------------- \r\n" ); document.write( " 1 2k+3 6k 0\r\n" ); document.write( "\r\n" ); document.write( "The remainder is 0, so I was lucky! lol\r\n" ); document.write( "\r\n" ); document.write( "So k is a zero of Q(x), thus x-k is a factor\r\n" ); document.write( "of Q(x) and we have partially factored Q(x) as\r\n" ); document.write( "\r\n" ); document.write( "Q(x) = (x-k)[x² + (2k+3)x + 6k]\r\n" ); document.write( "\r\n" ); document.write( "So we set the quadratic factor equal zero and solve:\r\n" ); document.write( "\r\n" ); document.write( "x² + (2k+3)x + 6k = 0\r\n" ); document.write( "\r\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |