document.write( "Question 1123083: In the diagram below, O is the centre of the circle and OS is perpendicular to the chord RT \r
\n" ); document.write( "\n" ); document.write( "Prove the theorem that states that RS=ST
\n" ); document.write( "

Algebra.Com's Answer #739306 by ikleyn(52803)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "The triangle ORT is an isosceles triangle, having the lateral sides OR and RT congruent (since they are the radii of the circle). \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The segment OS is the height in the triangle ORT drawn to its base.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In an isosceles triangle the altitude drawn to the base is the median in the same time.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, RS = ST.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Proved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "See the lesson\r
\n" ); document.write( "\n" ); document.write( "    - An altitude a median and an angle bisector in the isosceles triangle\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );