document.write( "Question 1122744: A radioactive substance follows the decay equation dA/dt = kA.
\n" );
document.write( " If 20% of the substance disappears in 10 years, what is its half-life? \n" );
document.write( "
Algebra.Com's Answer #738927 by solver91311(24713)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Negative because # atoms is decreasing\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Where \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If 20% has decayed in 10 years then the ratio of the initial amount to the ending amount is 0.80. Therefore:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, for the half-life:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Just solve for \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "John \n" ); document.write( " \n" ); document.write( "My calculator said it, I believe it, that settles it \n" ); document.write( " ![]() \n" ); document.write( " |