document.write( "Question 1122552: Show, that if p and q are two solutions of a quadratic equation ax^2 + bx + c = 0 (a cannot equal zero) then p + q = -b/a and p * q = c/a\r
\n" ); document.write( "\n" ); document.write( "I would really appreciate help with this problem!
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #738679 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
use the quadratic formula for roots, then
\n" ); document.write( ":
\n" ); document.write( "p = (-b +sqrt(b^2 -4ac))/2a
\n" ); document.write( ":
\n" ); document.write( "q = (-b -sqrt(b^2 -4ac))/2a
\n" ); document.write( ":
\n" ); document.write( "p+q = ((-b +sqrt(b^2 -4ac) +(-b -sqrt(b^2 -4ac)))/2a =
\n" ); document.write( ":
\n" ); document.write( "-2b/2a =
\n" ); document.write( ":
\n" ); document.write( "-b/a
\n" ); document.write( ":
\n" ); document.write( "p*q = (-b +sqrt(b^2 -4ac))/2a * (-b -sqrt(b^2 -4ac))/2a =
\n" ); document.write( ":
\n" ); document.write( "(b^2 -b^2 +4ac)/4a^2 =
\n" ); document.write( ":
\n" ); document.write( "4ac/4a^2 =
\n" ); document.write( ":
\n" ); document.write( "c/a
\n" ); document.write( ":
\n" ); document.write( "
\n" );