document.write( "Question 1121869: Find the determinant of the following matrices using co-factor method.\r
\n" );
document.write( "\n" );
document.write( ".........1.....2.....3.....4
\n" );
document.write( ".........4.....3.....2.....1
\n" );
document.write( "A =...2.....1.....4.....3
\n" );
document.write( ".........3.....4.....1.....2 \n" );
document.write( "
Algebra.Com's Answer #737870 by ikleyn(52810)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer. The determinant is equal to 0 (zero, ZERO).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "It is WRONG (=very ineffective) way to calculate this determinant using co-factor method.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "You can get the answer MUCH FASTER and with minimum calculations (actually, without massive calculations) using properties of determinant.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "a) Replace the second row of the matrix by the sum of the first and the second rows of the given matrix.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Then the second row becomes (5, 5, 5, 5).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Determinant of the transformed matrix will be the same as for the original matrix, by the fundamental property of the determinant.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "b) Next, replace the fourth row of the matrix by the sum of the third and the fourth rows of the given matrix.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Then the fourth row becomes (5, 5, 5, 5).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Determinant of the transformed matrix will be the same as for the original matrix, by the fundamental property of the determinant.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "c) Now the transformed matrix contains two identical rows, the second and the fourth, consisting of four \"5\", (5,5,5,5).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Hence, due to the other fundamental property, the determinant of the transformed matrix is zero.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Therefore, the determinant of the original matrix is equal to 0 (zero, ZERO).\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On these fundamental properties of determinant see the site\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " - https://www.math.drexel.edu/~jwd25/LM_SPRING_07/lectures/lecture4B.html\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "https://www.math.drexel.edu/~jwd25/LM_SPRING_07/lectures/lecture4B.html\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can find these properties in many sites in the Internet, as well as in your textbook (textbooks) in High/Abstract/Linear Algebra.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |