document.write( "Question 1121162: If the solution for x of x^2+px+q=0 are the cubes of the solutions for x^2+mx+n=0, express p and q in terms of m and n. \n" ); document.write( "
Algebra.Com's Answer #736944 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "Let  \"alpha\"  and  \"beta\"  be the roots to the second equation.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then, according to Vieta's theorem,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"alpha\" + \"beta\" = - m;   \"alpha\".\"beta\" = n.      (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "According to the condition, the roots of the first equation are  \"alpha%5E3\"  and  \"beta%5E3\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then, according to the Vieta's theorem\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    p = \"-%28alpha%5E3+%2B+beta%5E3%29\" = \"-%28alpha+%2B+beta%29%2A%28alpha%5E2-alpha%2Abeta+%2B+beta%5E2%29\" = \"-%28alpha%2Bbeta%29%2A%28%28alpha%2Bbeta%29%5E2-3alpha%2Abeta%29\" = \"m%2A%28m%5E2-3n%29\",\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    q = \"alpha%5E3%2Abeta%5E3\" = \"%28alpha%2Abeta%29%5E3\" = \"n%5E3\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer.  Under the given conditions,  p = \"m%2A%28m%5E2-3n%29\"  and  q = \"n%5E3\".\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );