document.write( "Question 1120745: We may define the three means (arithmetic, geometric, and harmonic) of two positive numbers a and b as\r
\n" );
document.write( "\n" );
document.write( "A = (a+b)/2\r
\n" );
document.write( "\n" );
document.write( "G = √ab\r
\n" );
document.write( "\n" );
document.write( "H = 2ab/ a+b, respectively\r
\n" );
document.write( "\n" );
document.write( "a. Show the inequality, A ≥ G ≥ H, holds if and only if a = b \n" );
document.write( "
Algebra.Com's Answer #736716 by ikleyn(52803)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " 1. Prove A >= G holds if and only if a = b.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "You have this chain of equivalent inequalities\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " 2. Prove G >= H holds if and only if a = b.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |