document.write( "Question 1120925: The roots z1,z2 Nd z3 of the equation x^3+3ax^2+3bx+c=0 in which a,b and c are complex numbers, correspond to the points A,B and C on the Argand plane. Find the C.G. of ∆ABC and show that it will be equilateral if a^2=b \n" ); document.write( "
Algebra.Com's Answer #736630 by ikleyn(52788)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Find the C.G. of ∆ABC\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "C.G. of a triangle is the center of gravity of the triangle.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The center of gravity of the triangle with the vertices A, B and C is the point with coordinates\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Show that it will be equilateral if a^2 = b\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "If a^2 = b, then the given equation\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x^3 + 3ax^2 + 3bx + c = 0\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "becomes\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x^3 + 3ax^2 + 3a^2*x + c = 0, or, equivalently,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " (x^3 + 3ax^3 + 3a^2*x + a^3) + (c-a^3) = 0, \r\n" ); document.write( "\r\n" ); document.write( " (x+a)^3 = -(c-a^3),\r\n" ); document.write( "\r\n" ); document.write( " x + a =\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Regarding the basics of complex number theory, you have the set of lessons\r \n" ); document.write( "\n" ); document.write( " - Complex numbers and arithmetical operations on them\r \n" ); document.write( "\n" ); document.write( " - Complex plane\r \n" ); document.write( "\n" ); document.write( " - Addition and subtraction of complex numbers in complex plane\r \n" ); document.write( "\n" ); document.write( " - Multiplication and division of complex numbers in complex plane\r \n" ); document.write( "\n" ); document.write( " - Raising a complex number to an integer power\r \n" ); document.write( "\n" ); document.write( " - How to take a root of a complex number\r \n" ); document.write( "\n" ); document.write( " - Solution of the quadratic equation with real coefficients on complex domain\r \n" ); document.write( "\n" ); document.write( " - How to take a square root of a complex number\r \n" ); document.write( "\n" ); document.write( " - Solution of the quadratic equation with complex coefficients on complex domain\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \"Complex numbers\".\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-II \n" ); document.write( "https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "into your archive and use when it is needed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |