document.write( "Question 1120571: For what values of m is the line y= mx a tangent to the parabola y=x^2 - 8x + 25? \n" ); document.write( "
Algebra.Com's Answer #736239 by ikleyn(52835)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "1. The equation for the common point of the straight line y = mx and the parabola y = x^2 - 8x + 25 is\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " mx = x^2 - 8x + 25, or\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x^2 - (8+m)*x + 25 = 0. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "2. The straight line is the tangent to the parabola if the two roots of the equation (1) merge into one root.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " The necessary and sufficient condition for it is equality of the discriminant of the equation (1) to zero:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " d = b^2 - 4ac = 0,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " where a= 1, b = -(8+m) and c= 25:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " d =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |