document.write( "Question 1119665: What is the smallest positive integer that has exactly: 6 divisors \n" ); document.write( "
Algebra.Com's Answer #735277 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer.   The smallest positive integer that has exactly  6  divisors is   12 = \"2%5E2%2A3\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solution.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "1.  For integer number N = \"p%5Ealpha\",  where p is a prime number and \"alpha\" is an integer exponent (index), \r\n" );
document.write( "\r\n" );
document.write( "    the number of divisors is \"alpha+%2B+1\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    You can easily check it:  the divisors  are  1, p, \"p%5E2\", . . . , \"p%5Ealpha\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "2.  For integer number  N = \"p%5Ealpha%2Aq%5Ebeta%2Aellipsis%2Ar%5Etheta\",  where p, q, . . . , r are prime divisors and \"alpha\", \"beta\", . . . , \"theta\" are integer exponents (indexes)  \r\n" );
document.write( "\r\n" );
document.write( "    the number of divisors is  \"%28alpha%2B1%29%2A%28beta%2B1%29%2Aellipsis%2A%28theta%2B1%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "3.  From these facts, you can easily obtain the answer.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Notice that  6 = 2*3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    It is easy to list those divisors:  1, 2, 4, 3, 6, 12.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );