document.write( "Question 1119530: Find the vertex, focus, length of latus rectum,and the equation of directrix of y^2 - 4y + 4x = 0 \n" ); document.write( "
Algebra.Com's Answer #735137 by josgarithmetic(39617)\"\" \"About 
You can put this solution on YOUR website!
\"y%5E2-4y%2B4x=0\"\r
\n" ); document.write( "\n" ); document.write( "\"-4x=y%5E2-4y\"\r
\n" ); document.write( "\n" ); document.write( "\"-4x%2B4=y%5E2-4y%2B4\"\r
\n" ); document.write( "\n" ); document.write( "\"highlight_green%28-4%28x-1%29=%28y-2%29%5E2%29\"-------horizontal axis of symmetry, parabola opens to the left; vertex is right-most point on the parabola.\r
\n" ); document.write( "\n" ); document.write( "-\r
\n" ); document.write( "\n" ); document.write( "\"-4=4p\"
\n" ); document.write( "\"p=1\"---------Directrix and focus both 1 unit away from the vertex.\r
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "VERTEX       (1,2)\r\n" );
document.write( "FOCUS         (0,2)\r\n" );
document.write( "DIRECTRIX    \"x=2\"\r\n" );
document.write( "
\n" ); document.write( "
\n" );