document.write( "Question 1119188: Use conditional proof or indirect proof to establish the truth of the following tautology.\r
\n" ); document.write( "\n" ); document.write( "[~S v ~(~T • ~U)] ⊃ [~U ⊃ (~T ⊃ ~S)]
\n" ); document.write( "

Algebra.Com's Answer #734701 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "1. [~S v ~(~T • ~U)] Premise
\n" ); document.write( "2.: [~S v (T v U)] Conditional Proof (CP) #1, 1, DeMorgan's (DeM)
\n" ); document.write( "3.: [(~S v T) v U)] 2, Associative Property (ASSOC)
\n" ); document.write( "4.: [(S —> T) v U)] 3, Relation of Implication (IMPL)
\n" ); document.write( "5.: [U v (S —> T))] 4, Commutative Property (COMM)
\n" ); document.write( "6.: [~U —> (S —> T)] 5, IMPL
\n" ); document.write( "7.:: S —> T CP #2, assumption #1
\n" ); document.write( "8.:: ~T CP #2, assumption #2
\n" ); document.write( "9.:: ~S 8,7 Modus Tollens (MT)
\n" ); document.write( "10.:: (S —> T) == (~T —> ~S) 7-9, CP #2 (shows logical equivalence)
\n" ); document.write( "11.: [~U —> (~T —> ~S)] 6,10 logical equivalence
\n" ); document.write( "12. [~S v ~(~T • ~U)] —> [~U —> (~T —> ~S)] 1-11, CP #1 \n" ); document.write( "
\n" );