document.write( "Question 1118993: Use natural deduction to derive the conclusion of the following arguments. Do not use conditional proof or indirect proof.\r
\n" );
document.write( "\n" );
document.write( "1. A ⊃ (B ⊃ D)
\n" );
document.write( "2. A ⊃ (C ⊃ F) / A ⊃ [(B ⊃ D) • (C ⊃ F)] \n" );
document.write( "
Algebra.Com's Answer #734426 by math_helper(2461)![]() ![]() You can put this solution on YOUR website! There is this logical equivalence, given in many tables where they include equivalences involving conditionals:\r \n" ); document.write( "\n" ); document.write( "(A—>X) & (A—>Y) == A—>(X&Y) \r \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( "So we can write \n" ); document.write( " \r\n" ); document.write( "1. A —> (B—>D)\r\n" ); document.write( "2. A —> (C—>F)\r\n" ); document.write( "3. (A—>(B—>D)) & (A—>(C—>F)) 1,2 Conjunction (CONJ)\r\n" ); document.write( "4. A —> ((B —> D) & (C —> F)) 3 Logical equivalence\r\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "——————————————————— \n" ); document.write( "Conditional Proof for comparison: \n" ); document.write( " \r\n" ); document.write( "1. A —> (B —> D) Premise\r\n" ); document.write( "2. A —> (C —> F) Premise\r\n" ); document.write( "3. :: A Conditional Proof assumption\r\n" ); document.write( "4. :: B —> D 3,1 MP\r\n" ); document.write( "5. :: C —> F 3,2 MP\r\n" ); document.write( "6. :: (B —> D) & (C —> F) 4,5 CONJ\r\n" ); document.write( "7. A—>((B —> D) & (C —> F)) 3-6 Conditional Proof\r\n" ); document.write( "\n" ); document.write( " |