document.write( "Question 1118832: Can some one please check my \"work\"\r
\n" ); document.write( "\n" ); document.write( "a moving company wants to purchase a min of 15 trucks with a load capacity of at least 36 tons. Model a holds 2 tons and costs 15,000 Model b holds 3 toms and costs 24,000 how many of each to minimize costs and what is the cost\r
\n" ); document.write( "\n" ); document.write( "Here is what I have so far\r
\n" ); document.write( "\n" ); document.write( "M= 15A+24B\r
\n" ); document.write( "\n" ); document.write( "A+B=15
\n" ); document.write( "B= -A+15\r
\n" ); document.write( "\n" ); document.write( "2A+3B _> 36
\n" ); document.write( "B= -2/3A + 12\r
\n" ); document.write( "\n" ); document.write( "Vertexs
\n" ); document.write( "0,15
\n" ); document.write( "9,6
\n" ); document.write( "18,0\r
\n" ); document.write( "\n" ); document.write( "to get lowest cost and min amount of capacity they need to buy 18 \"truck A\" and 0 \"Truck B\"\r
\n" ); document.write( "\n" ); document.write( "is this correct or am I missing a step?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #734259 by ikleyn(52847)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "Let X and Y be the numbers of trucks A and B, respectively.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then the constrains are\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "X + Y >= 15\r\n" );
document.write( "2X + 3Y >= 36\r\n" );
document.write( "\r\n" );
document.write( "X >= 0,  Y >= 0\r\n" );
document.write( "\r\n" );
document.write( "The cost function is C(X,Y) = 15000*X + 24000*Y to minimize.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The feasibility area is shown in the Figure below\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Plots  X + Y = 15  (red)  and  2X + 3Y = 36 (green).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The feasibility domain is the unbounded area in QI over the green and red lines.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The points to check the cost function are\r\n" );
document.write( "\r\n" );
document.write( "    P1 = (0,15)    (Y-intercept to red line)\r\n" );
document.write( "\r\n" );
document.write( "    P2 = (9,6)     (intersection of the red and green lines)\r\n" );
document.write( "\r\n" );
document.write( "    P3 = (18,0)    (X-intecept to green line).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The rest is just arithmetic.\r\n" );
document.write( "\r\n" );
document.write( "The values of the cost function are\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    at P1:  C(0,15) = 0*15000 + 15*24000 = 360000;\r\n" );
document.write( "\r\n" );
document.write( "    at P2:  C(9,6)  = 9*15000 + 6*24000  = 279000;\r\n" );
document.write( "\r\n" );
document.write( "    at P3:  C(18,0) = 18*15000 + 0*24000 = 270000.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "You are looking for the minimum - hence, your solution is at P3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer.  18 trucks of the type A and 0 trucks of the type B.\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Your solution is correct.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Nice job ! !\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "My congratulations ! ! !\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To see other similar problems solved by the same method, look into the lesson\r
\n" ); document.write( "\n" ); document.write( "    - Solving minimax problems by the Linear Programming method \r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );