document.write( "Question 1117867: Without using l’Hopital’s Rule or Series find
\n" );
document.write( "Limit(((1+x)^(1/x)-e)/x) as x=0 \n" );
document.write( "
Algebra.Com's Answer #733170 by math_helper(2461)![]() ![]() You can put this solution on YOUR website! Approaching 0 from the negative side: \r \n" ); document.write( "\n" ); document.write( "perl -e '$x=-.1; $e=2.718281828459; for($j=1; $j<6; $j++) { $a = ((1+$x)**(1/$x)-$e)/$x; print \"f($x) = $a\n\"; $x=$x/10;}' \n" ); document.write( "f(-0.1) = -1.49690162333441 \n" ); document.write( "f(-0.01) = -1.37171979700281 \n" ); document.write( "f(-0.001) = -1.36038798385263 \n" ); document.write( "f(-0.0001) = -1.35926551149801 \n" ); document.write( "f(-1e-05) = -1.35915214047877 \r \n" ); document.write( "\n" ); document.write( "And approaching 0 from the positive side: \n" ); document.write( "perl -e '$x=.1; $e=2.718281828459; for($j=1; $j<6; $j++) { $a = ((1+$x)**(1/$x)-$e)/$x; print \"f($x) = $a\n\"; $x=$x/10;}' \n" ); document.write( "f(0.1) = -1.24539368358998 \n" ); document.write( "f(0.01) = -1.34679990374718 \n" ); document.write( "f(0.001) = -1.35789622340665 \n" ); document.write( "f(0.0001) = -1.35901634074731 \n" ); document.write( "f(1e-05) = -1.35912667031945 \r \n" ); document.write( "\n" ); document.write( "Which looks to be \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |