document.write( "Question 1117348: Without using L'Hospitals rule find :
\n" ); document.write( " Limt((e^(17x)-17e^x +16)/(e^(16x)-16e^x+15)). as x=0
\n" ); document.write( "

Algebra.Com's Answer #732410 by ikleyn(52818)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "Introduce  z = \"e%5Ex\".  Then the given fraction takes the form\r\n" );
document.write( "\r\n" );
document.write( "    fraction = \"%28z%5E17+-+17z+%2B+16%29%2F%28z%5E16+-+16z+%2B+15%29\".    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The polynomial  \"z%5E17+-+17z+%2B+16\"  has the root z=1  and therefore is divided by (z-1) without a remainder.\r\n" );
document.write( "\r\n" );
document.write( "The factoring formula is  \r\n" );
document.write( "\r\n" );
document.write( "\"z%5E17+-+17z+%2B+16\" = \"%28z%5E16+%2B+z%5E15+%2B+z%5E14+%2B+ellipsis+%2B+z%5E2+%2B+z+-+16%29%2A%28z-1%29\".     (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Similarly, the polynomial  \"z%5E16+-+16z+%2B+15\"  has the root z=1  and therefore is divided by (z-1) without a remainder.\r\n" );
document.write( "\r\n" );
document.write( "The factoring formula is  \r\n" );
document.write( "\r\n" );
document.write( "\"z%5E16+-+16z+%2B+15\" = \"%28z%5E15+%2B+z%5E14+%2B+z%5E13+%2B+ellipsis+%2B+z%5E2+%2B+z+-+15%29%2A%28z-1%29\".     (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If you substitute (2) and (3)  into (1), you will get after canceling (z-1)\r\n" );
document.write( "\r\n" );
document.write( "    fraction =     (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is still not a safe situation, since both polynomials in numerator and denominator of (4) have z= 1 as a root.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we need divide each of (2) and (3) by (z-1) one more time. If you do it, you will get\r\n" );
document.write( "\r\n" );
document.write( "\"z%5E16+%2B+z%5E15+%2B+z%5E14+%2B+ellipsis+%2B+z%5E2+%2B+z+-+16\" = \"%28z%5E15+%2B+2z%5E14+%2B+3z%5E13+%2B+4z%5E12+%2B+ellipsis+%2B+15z+%2B+16%29%2A%28z-1%29\",   (5)\r\n" );
document.write( "\r\n" );
document.write( "\"z%5E15+%2B+z%5E14+%2B+z%5E13+%2B+ellipsis+%2B+z%5E2+%2B+z+-+15\" = \"%28z%5E14+%2B+2z%5E13+%2B+3z%5E12+%2B+4z%5E11+%2B+ellipsis+%2B+14z+%2B+15%29%2A%28z-1%29\".   (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, when you substitute (5) and (6) into (4) and cancel the common factor (z-1) again, you will get\r\n" );
document.write( "\r\n" );
document.write( "    fraction =    (7)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now you can safely find the limit of (7) at z ---> 1  simply substituting z = 1 into its numerator and denominator. You will get\r\n" );
document.write( "\r\n" );
document.write( "    fraction limit at z --> 1 is equal to  =    (8)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Easy summation of arithmetic progressions gives  Numerator = \"%2816%2A17%29%2F2\" = 136,  Denominator = \"%2815%2A16%29%2F2\" = 120.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence the answer is:  The given fraction limit at x ---> 0 is   \"136%2F120\" = \"17%2F15\".\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );