document.write( "Question 1116568: solve by addition method.\r
\n" );
document.write( "\n" );
document.write( "8x-3y=18
\n" );
document.write( "4x+5y=-4 \n" );
document.write( "
Algebra.Com's Answer #731453 by ikleyn(52787)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "solve by addition method.\r \n" ); document.write( "\n" ); document.write( "8x-3y=18 \n" ); document.write( "4x+5y=-4 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " 8x - 3y = 18 (1)\r\n" ); document.write( " 4x + 5y = -4 (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Multiply equation (2) by (-2) (both sides). Keep equation (1) as is. You get an equivalent system\r\n" ); document.write( "\r\n" ); document.write( " 8x - 3y = 18 (1')\r\n" ); document.write( "-8x - 10y = 8 (2')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now add equations (1') and (2'). The terms \"8x\" will cancel each other, and you will get a single equation for the unique unknown y:\r\n" ); document.write( "\r\n" ); document.write( "-3y + (-10y) = 18 + 8, or\r\n" ); document.write( "\r\n" ); document.write( "-13y = 26. It implies y =\r \n" ); document.write( "\n" ); document.write( "================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice that the standard and official name of this method is \"the Elimination method\".\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On solving systems of linear equations in two unknowns see the lessons\r \n" ); document.write( "\n" ); document.write( " - Solution of a linear system of two equations in two unknowns by the Substitution method \r \n" ); document.write( "\n" ); document.write( " - Solution of a linear system of two equations in two unknowns by the Elimination method \r \n" ); document.write( "\n" ); document.write( " - Solution of a linear system of two equations in two unknowns using determinant \r \n" ); document.write( "\n" ); document.write( " - Geometric interpretation of a linear system of two equations in two unknowns \r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-I in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-I - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \"Systems of two linear equations in two unknowns\".\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this online textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-I \n" ); document.write( "https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "to your archive and use it when it is needed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |