.
\n" );
document.write( " Surely, the condition MUST be rewritten in this form\r
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( " If
= ki, where k is a real number, then show that |z| = 1.\r\n" );
document.write( "
to be correct (adding that k is a real number).\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Let z = a + bi.\r\n" );
document.write( "\r\n" );
document.write( "We are given
= ki, which means that\r\n" );
document.write( "\r\n" );
document.write( "
= ki.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Left side is\r\n" );
document.write( "\r\n" );
document.write( "
=
.
=
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The denominator is now a real number.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The numerator is (a-1)*(a+1) + bi*(a+1) - bi*(a-1) + b^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since the ratio
is purely imaginary number ki, it means that the real part of the numerator is zero:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " (a-1)*(a+1) + b^2 = 0, or\r\n" );
document.write( "\r\n" );
document.write( " a^2 - 1 + b^2 = 0, which is equivalent to\r\n" );
document.write( "\r\n" );
document.write( " a^2 + b^2 = 1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " The last equality precisely means that |z| = a^2 + b^2 = 1, QED.\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "Solved.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "