document.write( "Question 1115944: Specify the values of x for which the given infinite geometric series has a sum. Then find the sum in terms of x.
\n" );
document.write( "1 + 4x + 16x2 + 64x3 + …\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #730770 by ikleyn(52798)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "An infinite geometric progression\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " a, ar, ar^2, ar^3, . . . \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "has a sum if and only if its common ratio \"r\" has the modulus (= the absolute value) |r| less than 1: |r| < 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In your case r = 4x, so the condition that this geometric series does converge is\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "|4x| < 1, or, equivalently, |x| <\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |