document.write( "Question 1115418: How many six-digit numbers divisible by 20 can be formed from the digits 0, 1, 2, 3, 4, 5 (with repetition).
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #730336 by ikleyn(52786)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "The units digit has to be 0 (1 choice -- 0).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The tens digit has to be even (3 choices -- 0, 2, or 4).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "First digits can be any of five digits (except of zero) (5 choices).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Each of the other three digits can be any one of the given digits (6 choices each).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Answer: 1*3*5*6*6*6 = 3240 six-digits divisible by 20 integer positive numbers can be formed.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |